Showing posts with label level measurement. Show all posts
Showing posts with label level measurement. Show all posts

Applications and Advantages of Guided Wave Radar (GWR) Level Transmitters in Modern Industries

Applications and Advantages of Guided Wave Radar (GWR) Level Transmitters in Modern Industries

Guided Wave Radar (GWR) level instruments, also known as Time Domain Reflectometry (TDR) instruments, are commonly used to measure the level of liquids, slurries, and solids in various containers. Here's a detailed explanation of their operating principles, applications, and best-use cases:

Operating Principles
  • Time Domain Reflectometry (TDR): At the core of GWR is the principle of TDR. An electromagnetic pulse transmits down a probe (guide). When this pulse reaches a medium with a different dielectric constant (like the surface of a liquid), a portion of the signal reflects back to the transmitter.
  • Measurement: The time the pulse takes to travel down the probe, reflect from the material's surface, and return is directly proportional to the distance traveled. By knowing the speed of the pulse and the time it took for the reflection to occur, the level of the medium is accurately calculated.
  • Probe Types: There are different probe designs available depending on the application. The three most common are:
    • Single Rod: Suitable for most applications, especially in smaller tanks or with aggressive media.
    • Twin Rod or Coaxial: Ideal for applications with higher demands on accuracy, especially in narrow tanks or with disturbances.
    • Cable: Used for tall, narrow tanks.
Industrial Applications

GWR level instruments are deployed in a variety of industries:
  • Oil & Gas: Measuring levels of crude oil, refined products, or water in storage tanks.
  • Chemicals: Monitoring levels of aggressive or caustic substances.
  • Pharmaceuticals: Ensuring precise measurements in mixing and storage vessels.
  • Food & Beverage: Measuring levels of various food products or ingredients, ensuring hygienic conditions.
  • Power Generation: Monitoring levels in coal hoppers or water storage for cooling.
  • Water & Wastewater: Tracking levels in storage tanks or sumps.
  • Mining: Measuring levels of slurries or solid materials.
Best Applications for GWR
  • High-temperature and High-pressure: GWR can function in conditions where other level measurement technologies might fail.
  • Aggressive Media: Given the suitable probe material, GWR can handle corrosive or aggressive substances.
  • Foaming or Agitated Surfaces: GWR provides reliable measurements even in conditions with foam or agitation, which might pose challenges for other technologies.
  • Low Dielectric Media: GWR can measure levels of media with low dielectric constants, which some other radar level instruments might struggle with.
  • Changing Media Properties: Even if the properties of the medium change (like density or conductivity), GWR measurements remain consistent.
  • Safety: For applications where intrusive instruments are not ideal due to safety concerns, GWR offers a non-intrusive option.
The Questtec QTS Guided Wave Radar transmitter provides independent readings of both liquid and solid levels. These direct-insertion, top-mounted radars measure the interface and direct levels of liquids and solids under various pressures and temperatures. The transmitter uses GWR technology to send pulsating high-frequency microwave energy down the probe in a bypass chamber. Consequently, the QTS accurately indicates the actual process level, even if the density changes over time.

However, while GWR has many benefits, it's not suitable for every application. Extreme turbulence, heavy build-up on the probe, or very low dielectric constants can sometimes pose challenges. Always consult with a level measurement specialist when determining the best technology for a specific application.

For more information, contact Automatic Controls of Virginia at https://acva.com or call 804-752-1000.

Questtec Solutions Introduces New "Level Up" Online Magnetic Level Gauge Configurator

Online Magnetic Level Gauge Configurator

Questtec Solutions has released its new online 'QTS Level Up' product configurator, which includes millions of product combinations from its Magne-Trac series. The QTS Level Up configurator improves the user experience on Questtec's website by quickly allowing engineers to customize and download 3D models. 

Questtec Solutions, a pioneer in liquid measurement innovation, provides high-quality products with dependable performance. The new QTS Level Up product configurator, currently available on the Questtec website, enables Questtec to complement its high-quality products with an equally remarkable digital customer experience. 

The new tool assists engineers in swiftly locating a Questtec product and configuring it on the fly to meet project parameters. The configurator creates a product number and a 3D representation of the configured part, allowing Questtec clients to see the specific item they requested. Users can then test their application by downloading a free 3D model in their selected native CAD file (among 150+ 3D and 2D CAD formats). 

Users can also receive a PDF product datasheet of the configured item in addition to on-demand CAD files. This PDF contains the configured product's technical specifications, the produced product number, and an interactive 3D preview.

Questtec Solutions has over 125 years of combined experience with liquid level gauge and valve product lines. Questtec Solutions, situated in Houston, Texas, can provide creative engineering solutions to satisfy our customers' demands thanks to a new state-of-the-art production facility and custom weld shop. 

Automatic Controls of Virginia can help with Questtec Solutions product commissioning, startup, and calibration, as well as service and repair. 

Automatic Controls of Virginia
https://acva.com
(804) 752-1000 

Questtec Solutions Liquid Level Measurement Products


Questtec Solutions specializes in the development and engineering magnetic level indicators, liquid level gauges and valve product lines. Product lines include:
  • Glass-Trac Liquid Level Gauges and Valves (formally Daniel Level Gauge & Valve)
  • Steam-Trac Steam and Water Gauges
  • Level-Trac Steam and Water Level Indicators and Alarms
  • Magne-Trac Magnetic Gauges
  • Armored Tubular
  • Sight Flow Indicators
  • Guided Wave Radar
  • LED Illuminators
  • Gauge Valves & Steam Valves
For more information, contact Automatic Controls of VA.
https://acva.com
804-752-1000

Level Measurement Using Guided Wave Radar

Guided Wave Radar Level Transmitter
Guided wave radar transmitter
mounted in bypass chamber with
magnetic level gauge.
(Questtec Solutions)
Guided wave radar transmitters are widely used across different industries. These devices with their simple installation and trouble-free operations help industrial companies save time and money. They are ideal for a large number of process applications ranging from simple to complex.

How Do Guided Wave Radar Transmitters Work?


Guided wave radar transmitters rely on microwave pulses. Since microwaves are not affected by dust, pressure, temperature variations, and viscosity, this type of transmitter produces highly accurate results.

A low-energy microwave pulse is sent down a probe, and a part of it is reflected back when the pulse hits the process media. The liquid level is directly proportional to the time-domain reflectometry. The time when the pulse is launched and received back is measured to determine the distance from the surface of the media.

Types of Guided Wave Radar Level Transmitters


Guided wave radar level transmitters are available in different probe configurations. Selecting the right probe is important for successful implementation of the device. While manufacturers offer a range of guided wave radars, most are derived from the three basic probe configurations: single element, twin element, and coaxial.

  • Single element probe — The single element probe is the most widely used and least efficient device. The device is popular since it is more resistant to the coating of the liquid.
  • Twin element probe — The twin element probe is a good, general purpose probe that is generally used in long-range applications. They are ideal in situations where flexible probes are important for successful reading.
  • Coaxial probe — The coaxial probe configuration is the most efficient guided wave radar level transmitters. The probes are used in more challenging low-dielectric applications.

Benefits of Guided Wave Radar Level Transmitters


Guided Wave Radar Level transmitters provide a range of benefits in different applications. The concentration of the measuring signal is strong and clean. This is due to the narrow path of the signal propagation that reduces the chances of impact by stray signals due to obstacles or construction elements inside the tank.

Another benefit of guided wave radar level transmitters is that they are easy to install. No mounting holes are required to install the device. This results in cost savings for the organization. The waveguide can be formed to follow the tank’s contours or mounted at an angle.

The device is ideal in situations where an interface measurement is required. The measuring signals can penetrate the medium deeply, resulting in more accurate results. The waveguide technology is suitable for applications where the medium is subjected to heavy vapors, foam, and dust.

Guided Wave instruments can detect changes in dielectric consents on the boundary of a property. The device can be configured to detect level at both the top and the bottom of a layer of emulsion.

Industrial Application of Guided Wave Radar


Guided wave radar level transmitters are increasingly being used in process industries. The sensors are used in situations that previously employed ultrasonic, hydrostatics, and capacitance. The accuracy specification of the basic model range is up to ±5mm, while the accuracy of the advanced models is up to ±2mm.

The device is generally used in industries to take level readings. The readings are used for local indication and visualization in control systems.

Moreover, guided wave radar level transmitters are also used for managing liquid inventory, determining safety limits, dry run protection, and leak detection. Other applications of guided wave radar level transmitters include communicating low limits to suppliers, automated ordering systems, and streamlining the logistics process.

Guided radar level measurement is also suitable for bulk solids. The surface type is not restricted to liquids since the reflected waves are guided easily through any medium. Foam formation and turbulent liquid surfaces and different angled surfaces (as is the case with bulk solids) don’t influence the accuracy of the reading.

Selection of Guided Wave Radar Level Transmitters


Selection of guided wave radar level transmitters should be based on the requirements of the task. Generally, the rigid single element probe configuration is ideal for angled installations for flowing liquids. The dual flexible wire probe is suitable for most other common applications.

A coaxial probe configuration is recommended for liquids that are cleaner with low dielectric constant and with turbulence on the product’s surface. This type of guided wave radar device is also recommended for installations where the probe is near the tank wall or other obstacles.

Make sure that the device can withstand the range of temperature within the tank. Most GWR devices are rated up to 850 deg F or 450 deg C. You should select a device with added signal strength since this will result in increased reliability and accuracy of the devices.

Guided Wave Radar Level Transmitter
Guided wave radar transmitter.
(Questtec Solutions)
Guided wave radar level transmitter with dynamic vapor compensation is recommended where a high level of accuracy is required under a high-pressure environment. The measurement taken from the device can compensate for changes in vapor dielectric, which results in improved accuracy.

Other factors that should be considered include mounting and proximity. Single probe configuration can be installed almost anywhere. But the single probe configuration can only to apply to specific situations.


Guided Wave radar level transmitters can also be used with an agitator. However, certain things must be considered prior to use the device. The probe must be prevented from contacting the agitator blades. Make sure that you confirm the ability of the probe to withstand the force inside the medium. This is important since turbulent on the surface may decrease the accuracy of the measurement. You can install the device in a bypass chamber or stilling well for an agitated tank. Make sure you speak with an applications expert before specifying or installing a guided wave transmitter. With their consultation, you'll save time as well as improve efficiency and safety.

For more information, contact Automatic Controls of Virginia. Call (804) 752-1000 or visit https://acva.com.